
ABSTRACT

Drug discovery has become increasingly difficult in the last few
decades and the cost of drug development has risen relentlessly. Given
the high attrition rates the industry continues to face, there is an urgent
and pressing need for quality developmental leads. Essential to tack-
ling the observed critical productivity and attrition problems are learn-
ing from past mistakes and turning information into knowledge. This
will ensure the efficient prosecution of tractable targets and optimiza-
tion of compounds into quality drug candidates with the ability to
make it to market. The Society for Medicines Research (SMR) meeting
entitled "Approaches to Lead Generation", held on June 12, 2008,
assembled a diverse program of expert speakers to discuss the exciting
scientific and technological opportunities that will enable today's "drug
hunters" to improve the efficiency and quality of future lead generation.

Dr. Paul Leeson (Head of Medicinal Chemistry, Respiratory and
Inflammation Research, AstraZeneca R&D, Charnwood, U.K.)
opened the meeting with the provocatively titled lecture “Drug-like
concepts, 10 years on – what have we learned?” Highlighting the
importance and impact of “Lipinski’s rule of 5”, a widely accepted
rule of drug-like properties that has received over 1,700 citations
since it was published in 1997, Dr. Leeson presented an exhaustive
review on how drug-like concepts have potentially influenced the
compounds that have been synthesized. Data were obtained from a
variety of sources, including the FDA Orange Book, patented com-
pounds for the top 12 pharmaceutical companies via Prous Science
Integrity®, GVK Bio and Cerep Bioprint®, and then combined with
calculated physical property data. 

In this analysis of recently patented compounds originating from the
major pharmaceutical companies, Dr. Leeson and his colleagues
concluded that these more recent compounds have significantly dif-
ferent physicochemical properties compared to recently discovered
oral drugs and those in early development (1). Molecular weight,
O+N- and OH+NH counts have all increased sharply, whereas
lipophilicity has remained relatively unchanged, and it has been
observed that the more lipophilic compounds do not survive the
development cycle and are discontinued (2). Current medicinal

chemistry trends over the period 2003-2007 appear to be moving
towards creating chemical libraries with both increased molecular
weight and lipophilicity. Interestingly, Dr. Leeson noted that the
cLogP range within a target class was greater than between target
classes. Drug safety is also encoded, albeit empirically, by physico-
chemical properties and there is a broad trend showing that com-
pounds with such profiles will have concomitantly increased risks
with respect to their “developability profile”, resulting in reduced
developmental success.

The reasons for this surprising but apparent trend of physical prop-
erty inflation are complex. Inevitably, there will be clear differences
that exist in every company based on historical, cultural and scien-
tific awareness and precedents, despite the wide acceptance of the
rule of 5 for drug-like properties and the decline in new chemical
entity (NCE) productivity. Dr. Leeson illustrated this point by review-
ing the WO patent literature on chemokine receptor CCR5 antago-
nists designed around a common phenylpropylpiperidine template.
Synthetic chemistry efforts by four major pharmaceutical companies
resulted in very different outcomes: AstraZeneca registered 1,069
compounds with a mean cLogP of 3.13 and mean molecular weight
of 579.9; GlaxoSmithKline registered 690 compounds with a mean
cLogP of 5.28 and mean molecular weight of 598.1; Merck & Co. reg-
istered 2,457 compounds with a mean cLogP of 5.24 and mean
molecular weight of 562.8; and Pfizer registered only 309 com-
pounds with a mean cLogP of 2.76 and mean molecular weight of
488.4. 

In concluding, Dr. Leeson emphasized that now more than ever
medicinal chemistry must play its part in reducing pipeline risk and
attrition. Physical properties are 100% controllable, there are
numerous computational tools available which can assess these
risks presynthesis, and reducing lipophilicity alone will improve pro-
ductivity and thus increase the likelihood of success for future cam-
paigns.

Dr. Mark Whittaker gave a lecture outlining Evotec’s multiple
approaches to lead generation. In agreement with Dr. Hann, the
decision to adopt a particular screening strategy is strongly influ-
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enced by whether there is structural information on the target
and/or known ligands. Evotec’s toolbox for hit finding ranges from
an ability to conduct biochemical ultra-high-throughput screening
(uHTS) through the use of NMR fragment screening and in silico vir-
tual screens (Table I).

A good example of this approach was highlighted through the col-
laborative efforts with Oxagen in the identification of CRTH2
(GPR44) antagonists. Indomethacin was identified from the litera-
ture as a starting point as a weak CRTH2 agonist. Rapid optimiza-
tion around the core scaffold led to the identification of a potent
CRTH2 antagonist that displayed good bioavailability in rats. Subse-
quent structure–activity relationship (SAR) iterations then led to the
identification of a development candidate (Fig. 1).

Hematopoietic prostaglandin D2 synthase was highlighted as an
example of a successful HTS-to-lead effort. PGD2 synthase is
involved in the conversion of PGH2 to PGD2, a process that has been
implicated in allergic inflammation and a number of metabolic dis-
orders (Fig. 2). The activity of PGD2 is glutathione-dependent and
this was utilized in the configuration of a fluorescence-based assay.
Measuring the reaction of monochlorobimane (MCB) with glu-
tathione (GSH) enabled the assay to be miniaturized to a 1,536-well
assay format while retaining a Z’ of 0.88 and a reference hit thresh-
old of ca. 15% (Fig. 3). In parallel to the HTS assay, x-ray crystallog-
raphy was conducted to give the chemists access to a < 2 Å crystal
structure of H-PGD2S. Verified hits from the HTS campaign were
then co-crystallized, providing the chemists with structural informa-
tion that led to the rapid identification of a subnanomolar inhibitor
from low- molecular-weight fragments (Fig. 4).

Dr. Mark Dowling (Novartis Institutes for BioMedical Research) intro-
duced a pharmacological perspective to the meeting and delivered
a lecture concerning how, why and when to determine an antagonist
mechanism of action in the drug discovery setting. At what stage of
the discovery process should you understand the location of drug
binding to a target protein, since this governs the mechanism of inhi-
bition and influences the maximal potential efficacy. Should it be
introduced in the hit-to-lead phase? Typically, following validation of
antagonist HTS campaign data, chemically attractive hits are rou-
tinely clustered into distinct structural classes. Chemically tractable
classes are then promoted into the hit-to-lead phase of drug discov-
ery, and at this stage the affinity of individual compounds is often
defined by an IC50 or derived Ki/b. The mode of inhibition (competi-
tive, noncompetitive, allosteric) is commonly only determined for

late-stage compounds for information rather than as a means of
candidate selection.

Dr. Dowling suggested two main reasons as to why you would want
to promote mechanism of action studies: 1) pharmacological analy-
sis and interpretation of data; and 2) potential for improved thera-
pies. Regarding the second point, Dr. Dowling explained that
allosteric modulators, for example, could maintain both spatial and
temporal aspects of agonist signaling and provide the potential for
enhanced efficacy. Whereas competitive antagonism is influenced
by local agonist concentrations, an inhibitor acting via a noncompet-
itive mechanism will give effective blockade even in the presence of
high agonist concentrations. Earlier identification of antagonists
acting via a noncompetitive mechanism would be useful for certain
respiratory targets – for example, targeting inhibition of neutrophil
recruitment in the lung (local target) in respiratory disease states.

Dr. Dowling indicated that there can be a number of assay difficul-
ties in establishing a definitive mechanism of action. For example,
the appropriate assay format needs to be designed depending upon
the type of inhibition being defined (i.e., competitive, noncompeti-
tive, allosteric), and this information may not be available prior to ini-
tiation of such studies. In addition, potential assay artifacts can lead
to the incorrect assignment of the inhibitory mechanism. The use of
highly amplified/efficiently coupled systems can lead to misinter-
pretation of true noncompetitive inhibition. However, the use of a
lower expression/less efficiently coupled system will “unveil” a non-
competitive mechanism of action. Compounds that are strongly
allosteric may appear competitive at low concentrations. Testing a
broad range of concentrations during mechanism of action studies
will differentiate between allosteric and competitive inhibition.
Finally, Dr. Dowling recommended that non-equilibrium-based
assays (e.g., FLIPR) should not be used to determine mechanism of
action as kinetic artifacts may lead to misclassification of the antag-
onist type.

The lecture closed with the question “When should mechanism of
action be determined in the drug discovery process?” Ideally, in
order to provide the most beneficial impact in the drug discovery
process, Dr. Dowling felt it should be an integral part of lead finding,
but prior to lead optimization. However, the time taken to determine
mechanism of action must be balanced with the high-throughput
nature required at this stage in the discovery process.

“In silico lead generation: reality and aspiration” was discussed by
Dr. Paul Finn (InhibOx, Oxford). The Human Genome Project and a
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Table I. Screening methods for lead generation.

Screening method Biochemical and cellular uHTS Biochemical fragment screening NMR fragment screening Virtual screening

Chemical matter > 250,000 compounds from 20,000 fragments from 20,000 fragments from About 6 million 
commercial sources and commercial sources commercial sources commercially available 
in-house synthesis compounds

Technology Proprietary EVOscreen™ Proprietary EVOscreen™ 600 MHz NMR Licence to GOLD run on distributed
systems systems SAR-by-NMR™ technology computer grid of 300 

PCs

Throughput > 100,000 data points/day > 100,000 data points/day About 600 compounds/day About 50,000 
compounds/day
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Figure 1. Optimization of indomethacin to a potent CRTH2 (GPR44) antagonist.

Figure 2. Conversion of PGH2 to PGD2 by hematopoietic prostaglandin D2 (PGD2) synthase. 

Figure 3. Utilization of monochlorobimane (MCB) to configure a 1,536-well assay for a PGD2 synthase inhibitor high-throughput screening (HTS).

Figure 4. Utilization of x-ray crystallography to rapidly optimize a PGD2 synthase inhibitor hit to subnanomolar lead. 



greater understanding of disease processes have led to an increase
in the number of potential therapeutic targets. Many of these repre-
sent new classes of targets for which chemical starting points are
limited. Although there have been big investments in HTS technolo-
gy and screening libraries, lead identification remains a bottleneck,
especially for novel structural targets. The explosion in availability of
structural data on target proteins, together with advances in compu-
tational performance, have led to the use of in silico lead generation
technologies in order to try to alleviate this bottleneck. Dr. Finn
described the two main categories of virtual screening: target-based
(docking) and ligand-based. Within the literature there are many
favorable examples of the use of virtual screening to generate leads
(3-7). However, one of the issues of virtual screening is that the tech-
nique can lead to many false-positives, with a hit rate of > 90% being
frequent. The complexity of the target is often one of the fundamen-
tal issues. In addition, there are few good comparative studies to
identify which would be the best method to select (8). The best esti-
mate is that average performance is similar across many methods,
but with large variability (9). It is also usually difficult to predict the
best method to use in advance. The high cost of commercial pro-
grams often means that only the largest companies can afford
access to multiple methods. Dr. Finn pointed out that research into
improved virtual screening methods is currently under way, with
many groups worldwide being active in the development. However,
in agreement with other experts, Dr. Finn felt that much of this effort
is focused on incremental advances within current paradigms: “One
can always hope that incremental improvements in current tech-
niques will gradually lead to major advances. Such efforts are sensi-
ble, but they cannot be the only strategy; there is a call for more
adventurous departures than are being published. For scoring in
particular, the gap between what is required and the current meth-
ods is large.” (10).

Dr. Finn detailed the steps that would be required to achieve the
aspirations for virtual screening. These include: 1) better benchmarks
to assist real-world choices; 2) more effort in the development of rig-
orous methods that better combine accuracy and speed; 3) faster
methods to broaden the scope of chemistry space; and 4) wider
access to methods, especially within academia. One approach to
achieve improved accuracy of virtual screening is currently being
examined by the DeZnIT project (Design of Zinc Metalloenzyme-Tar-
geted Drugs Using an Integrated Technology Approach). This is a
collaborative pan-European research project conducted by a consor-
tium of seven partners involving leading experts in computer-aided
design, synthetic medicinal chemistry, structural biology and the
molecular biology of these enzymes. The project is coordinated by
InhibOx (Paul Finn) and is aimed at improving technology for zinc
metalloenzymes, therapeutically important but difficult targets for
virtual screening.

Improving the speed of virtual screening could be achievable
through the use of ultrafast shape recognition (USR). USR is more
than 1,500 times faster than the fastest method reported in the lit-
erature. A search with USR that takes 21 h would take the next
fastest method at least 3.6 years to complete (11).

In order to improve the access to virtual screening, InhibOx is collab-
orating with the National Foundation for Cancer Research (NFCR) to
make some of its tools available via a web portal (www.nfcr.org).

While Dr. Finn acknowledged that the aforementioned research proj-
ects are still in their early stages, such approaches offer hope that
aspirations for in silico lead generation will be converted into reality.

Dr. Andy Bell (Pfizer, Sandwich, U.K.) delivered an interesting lecture
on enhancing HTS triage to deliver better-quality leads. Over the
last 10 years the Pfizer file has expanded from 500,000 to 3.9 mil-
lion compounds, largely as a result of a directed file enrichment ini-
tiative. From the outset, attrition was a key consideration for the file
enrichment strategy. Knowledge that certain chemotypes are most
likely to fail in development and that clinical candidates are similar
to leads was incorporated into the library design in order to make
and screen drug-like or lead-like compounds. This strategy was
termed the “beautiful compound concept” (12). 

Of the current Pfizer screening file, 68% is comprised of libraries,
27% of broadly available singletons and 5% of singletons with limit-
ed availability. While a file of this magnitude offers multiple options
for many new HTS targets, there is a need to develop additional
triage methods to cope with the volume of hits. By using historic
screening data for compounds in its file, Pfizer has constructed activ-
ity models for all targets screened in-house. These have been used
to subsequently identify false-positives and -negatives from primary
screens and to prioritize compounds for IC50 testing. A reduction in
the high proportion of false-positives/negatives and improvement in
target specificity have been achieved by deriving multicategory
Bayesian models. A similar approach utilized by Novartis was high-
lighted, in which they used in silico chemogenomics for defining
false-positives in reporter gene assays and the methods for prioritiz-
ing cell-based HTS data (13). The Pfizer statistical models were
derived using training sets from Cerep Bioprint, Inpharmatica StAR-
LITe, Thomson IDDB and Pfizer in-house databases.

Dr. Bell gave an example of how the incorporation of statistical mod-
els has been used to avoid off-target pharmacology in a cell-based
β-lactamase reporter gene assay (functional assay for an aminergic
G-protein coupled receptor [GPCR] in antagonist format). A large
number of confirmed hits (38,870) were run through their multicat-
egory Bayesian model (predicting 515 human targets), generating
10,806 predictions. Predictions with a high Bayesian score (equating
to a high confidence of any activity) were kept. It was found that the
kinases dominated their high prediction hitters. These were subse-
quently discarded, to enable focus on compounds with predictions
for no activity or aminergic activity. Pfizer frequent-hitter models
were also generated in order to prioritize potential false-positives.
The dominant targets that were predicted were the kinases (as
observed previously), phosphodiesterases (PDEs; known mecha-
nism) and peptide GPCRs (historic data and models contaminated
with frequent hitters?). 

Although the majority of recent additions to the Pfizer corporate file
are derived via parallel synthesis, a significant proportion of the HTS
hits are still of singleton origin. Dr. Bell described how Pfizer has fur-
ther used statistical methods to identify library protocols capable of
delivering the closest analogues of hits, regardless of their origin.
This strategy was used recently in PDE lead discovery and in the
selection of a small-molecule PDE9 inhibitor for obesity and dia-
betes. HTS identified a hit not derived from a targeted library (see 11,
Table II).
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Table II. Selection of a potent and selective small-molecule PDE9 inhibitor.

Compound Structure PDE9 PDE1A PDE1B PDE1C
IC50 IC50 IC50 IC50

1 10 nM 45 nM 32 nM 5 nM

2 > 10,000 nM

3 56 nM 2500 nM 2650 nM 520 nM

4 82 nM 1430 nM 2630 nM 1340 nM

5 40 nM 2200 nM 1650 nM 1530 nM

6 17 nM 2700 nM 953 nM 338 nM

7 87 nM > 10,000 nM > 10,000 nM 2050 nM
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Table II (Cont.). Selection of a potent and selective small-molecule PDE9 inhibitor.

Compound Structure PDE9 PDE1A PDE1B PDE1C
IC50 IC50 IC50 IC50

8 650 nM

9 32 nM > 10,000 nM > 10,000 nM 1600 nM

10 36 nM 7700 nM 10,000 nM 4400 nM

11 7 nM > 10,000 nM > 10,000 nM 7200 nM
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Two sets of libraries were prepared around this lead using the proto-
col described below, totaling 444 derivatives. The key finding was
that ortho-substitution on the benzyl group at R resulted in ana-
logues with higher levels of selectivity (Table II). Despite the
improved selectivity of compounds 33 and 44, they did not meet the
required 100-fold window, and the solubility of these analogues was
very poor. The addition of amine groups as in 55 was tolerated and
improved the potency, selectivity and solubility. Further rapid opti-
mization resulted in the identification of a potent and selective PDE9
inhibitor (compound 1111).

In “Marrying natural products and virtual screening to create new
leads”, Prof. Alan Harvey (Strathclyde Innovations in Drug Research,
University of Strathclyde, Glasgow, U.K.) reminded the audience that
natural products are the most consistently successful source of drug
leads. While screening libraries may contain over a million com-
pounds and are relatively simple to build, these collections are per-
haps limited in their structural and chemical diversity. Natural prod-
ucts contain higher structural diversity and are a useful addition to
libraries of synthetic compounds, since 40% of chemical skeletons in

published natural product databases are not found in synthetic
libraries. Natural products have the potential to operate outside of
traditional synthetic space, enabling them to hit difficult targets, res-
cue stalled projects and create new chemical intellectual property.

Biodiversity is a key component to successful drug hunting. Past suc-
cesses for natural products include atropine, ephedrine, morphine
and quinine. More recent examples include ivermectin, cyclosporine
and galanthamine. Since 1995, of the 244 different drug prototypes,
nearly 60 originated from natural products compared with just 40
from synthetic chemistry. During the period 1981-2006, the FDA
approved some 1,184 NCEs, of which over 50% were either derived
from or inspired by natural products compared with only 30% from
traditional synthetic campaigns. Despite the clear and recognizable
structural diversity offered by natural products and their contribu-
tions to drug discovery research, the general trend has been for
pharmaceutical companies to shy away from the use of natural
products as part of an HTS strategy.

One of the reasons for this current trend, Prof. Harvey postulates, is
the difficulty in accessing sufficient quantities of suitably diverse



chemicals, including those which are very rare. Working in associa-
tion with other academic colleagues, the Drug Discovery Portal at
Strathclyde University (www.ddp.strath.ac.uk) resolves these poten-
tial hurdles by linking structures and chemists with targets and biol-
ogists, thereby initiating and facilitating advanced in silico screening
and hit identification. This approach provides easy access to a library
containing a high range of chemical diversity, including natural
products, derivatives and synthetic intermediates, that is constantly
refined and updated. Highlighting the use of such an approach, Prof.
Harvey presented a case history around the virtual screening of
novel adenosine receptor A2A antagonists. Using caffeine as a start-
ing point, a pharmacophore model was created and 67 compounds
were sourced from the database. Further profiling of these early hits
against the A2A receptor at 100 µM to determine the Ki for A2A and A1
receptors yielded a 10% hit rate of novel chemical skeletons with Ki
values of < 1 µM at A2A and > 100-fold selectivity versus A1. Natural
products and lead finding therefore have real potential for world-
wide access to a unique collection with drug-like diversity and novel
chemical intellectual property.

Dr. Mike Hann (Director of Structural Biology, GlaxoSmithKline, U.K.)
gave a highly interesting and thought-provoking lecture on the chal-
lenges facing the pharmaceutical industry on the potential numbers
of “druggable molecules” that can be made and how this impacts
“hit” identification. In reality, chemists struggle with balancing
numerous properties, even within the druggable space. The need to
focus on diversity is inversely proportional to the knowledge that is
available on each target. The extremes of this are the use of struc-
ture-based drug design, where a protein structure is available, and
its converse, the need to prepare diverse libraries where zero knowl-
edge of the target is available. Ideally, drug discovery should
attempt to make the journey as short and efficient as possible by
choosing the optimal starting point carefully, maximizing the rate of
analogue synthesis (use of automation and tractable chemistry) and
ensuring that the size of the step in desired properties is as large as
possible by utilizing in silico predictive models which have been cor-
related to measured biophysical data. 

Dr. Hann presented the advantages of exploring multiple approach-
es to lead identification, in particular the benefits of fragment-based
drug discovery, which usually involves the detection (usually at high
concentration) and elucidation of the binding mode (usually by x-ray
crystallography or NMR) of small, low-molecular-weight compounds
(i.e., “fragments”, “scaffolds”, “templates”, “privileged cores”,
“monomers”, “building blocks”, etc). In practice, this can involve
screening of customized libraries of hundreds to thousands of “frag-
ments” that might be expected to ultimately be a key part of a more
fully developed and optimized drug-like molecule.

Dr. Hann then introduced the audience to his five fortes of frag-
ments. Firstly, the combinatorial explosion of chemistry space
means that fragments can sample more of the available chemistry
space at that level of complexity than is possible with more complex
molecules. Secondly, with lower complexity there is a higher proba-
bility of compounds matching the receptor even though they may be
harder to detect. More complex molecules are more likely to have
more “clashes” and thus do not fit. Thirdly, medicinal chemists like
to build molecules and fragments are thus a great starting point for
structure-based design. Analysis of Sneaders’ book on “Drug Proto-

types and Their Exploitation” indicates that from the 470 drug case
histories, there are the following changes in property values during
the lead to drug process:

Interestingly, analysis of the molecular weight of the libraries syn-
thesized by GlaxoSmithKline indicated that these were far greater
than Sneaders’ leads, probably as a result of designing large
libraries with many points of diversity, which ultimately leads to an
increase in complexity and potentially a decrease in the probability
of any given molecule being a hit. Dr. Hann suggested that a more
efficient approach is to stop making large libraries and instead focus
on identifying lower molecular weight, less complex molecules that,
while they may also be less potent, can be optimized into the drug-
gable area by adding both affinity and the required pharmacokinet-
ic properties. A fourth guide for drug discovery is to focus on ligand
efficiency (14).  While there are many ways to define this approach, it
generally involves identifying and optimizing the potency of leads
normalized for a number of calculated properties (molecular weight,
polar surface area and lipophilicity). 

Finally, Dr. Hann discussed the idea that by focusing on fragments
due to their required properties of high solubility and ligand efficien-
cy, the final compound tends to retain many of these properties. Fur-
thermore, although these fragments might have low specificity
against a given target, this gain can be built in as required during the
optimization process. In contrast, many hits from HTS collections
that have already been optimized for other programs may have sig-
nificant molecular weight and complexity added during subsequent
optimization for the new target. A further point to this approach is
that if polypharmacology is required it is again more desirable to
start with a small ligand-efficient fragment as a starting point.

Chemogenomics comprises a systems-based approach that estab-
lishes the relationship between targets and ligands that are used as
target modulators in living systems, from individual cells to whole
organisms. This approach requires the integration of the basic disci-
plines of chemistry, biology, genetics, informatics, structural biology
and chemical screening into a collective study of complex chemical
and cellular responses. Dr. John Overington (Biofocus DPI, London,
U.K.) espoused an in-depth understanding of such interactions
between small molecules and specific proteins, as this can enhance
the development of new biological tools and the identification of
new drug targets. Such knowledge can be obtained using chemoge-
nomic screening, coupling biological and chemistry spaces at the
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Av # ∆ % Av ∆ % Av ∆ %
arom arom cLog P cLog P CMR CMR

1.3 0.2** 15 1.9 0.5** 26 7.6 1.0** 14.5

Av # ∆ % Av ∆ % Av ∆ %
HBA HBA HBD HBD heavy Heavy

2.2 0.3** 14 0.85 –0.05+ (4) 19.0 3.0** 16

Av # ∆ % Av ∆ % Av ∆ %
MW MW MV MV Rot B Rot B

272 42.0** 15 289 38.0** 13 3.5 0.9** 23



genomic level, thus leading to a gene family-led approach in gener-
ating novel and important therapies.

The use of chemogenomic screening is on the increase but gener-
ates large amounts of data requiring novel and sophisticated analyt-
ical techniques. In utilizing this approach, Dr. Overington and his
colleagues at Biofocus DPI have developed a suite of databases that
aim to select the best biological targets for novel drugs based on the
most appropriate drug-like chemistry starting points. This is in line
with the strategy originally advocated by Prof. James Black in his
famous maxim “the most fruitful basis for the discovery of a new
drug is to start with an old drug”. Drugstore™ is a database of known
drugs, StARLITe™ contains data on known compounds and their
effects, Strudle™ contains binding site and “druggability” informa-
tion, and Kinase SARfari™ and GPCR SARfari™ are informatics sys-
tems for the most widely used target classes in drug discovery. (On
July 23, 2008, Biofocus DPI announced the transfer of these data-
bases for predictive drug discovery to the European Molecular Biol-
ogy Laboratory’s European Bioinformatics Institute [EMBL-EBI],
which will provide access to the data under a grant from the Well-
come Trust.)

One of the problems that Dr. Overington encountered in the devel-
opment of these tools was that the literature is still relatively pollut-
ed, containing numerous errors in data and even compound struc-
tures. By correctly abstracting the pure and correct data from the
literature, maintaining and constantly updating these high-quality
databases, the systems for chemogenomic data mining can be opti-
mized and aligned with other databases and informatics systems.
This “machine learning approach” represents an exciting new para-
digm for drug discovery and new lead generation.
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